X^2+y^2=56.25

Simple and best practice solution for X^2+y^2=56.25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+y^2=56.25 equation:



X^2+X^2=56.25
We move all terms to the left:
X^2+X^2-(56.25)=0
We add all the numbers together, and all the variables
2X^2-56.25=0
a = 2; b = 0; c = -56.25;
Δ = b2-4ac
Δ = 02-4·2·(-56.25)
Δ = 450
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{450}=\sqrt{225*2}=\sqrt{225}*\sqrt{2}=15\sqrt{2}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-15\sqrt{2}}{2*2}=\frac{0-15\sqrt{2}}{4} =-\frac{15\sqrt{2}}{4} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+15\sqrt{2}}{2*2}=\frac{0+15\sqrt{2}}{4} =\frac{15\sqrt{2}}{4} $

See similar equations:

| 3(v+10)=-9 | | 20=4(k+2) | | 19n=18n-19 | | 19n=18n−19 | | 3x+5x-75=180 | | -16/c=4 | | 4y-5=25 | | 3x+5x-75=280 | | 8(5x+5)=5(9x+1) | | f/3-19=-17 | | -24=8(u+8)+3u | | 4(5-3x/2)=6 | | 10-t=19 | | 10−t=19 | | (9x+66)=90 | | w−5=2 | | 4(j+-5)=16 | | 2x(4x-10)=98 | | 14=2(y=2) | | 10000=5000x | | 2n-(-8)=18 | | 6x+65=125 | | (1+0.3)=x=(1+0.5) | | 2n−-8=18 | | j−43=3 | | 4y+7=32 | | 4(x+5=28 | | (7x–5)=(4–3x) | | 1/4*u=12 | | 15-5(4c-6)=50 | | 8x–5;x=4 | | 3-(x+7)=3(-2x-4) |

Equations solver categories